Neural Network Based BCI by Using Orthogonal Components of Multi-channel Brain Waves and Generalization
نویسندگان
چکیده
FFT and Multilayer neural networks (MLNN) have been applied to ‘Brain Computer Interface’ (BCI). In this paper, in order to extract features of mental tasks, individual feature of brain waves of each channel is emphasized. Since the brain wave in some interval can be regarded as a vector, Gram-Schmidt orthogonalization is applied for this purpose. There exists degree of freedom in the channel order to be orthogonalized. Effect of the channel order on classification accuracy is investigated. Next, two channel orders are used for generating the MLNN input data. Two kinds of methods using a single NN and double NNs are examined. Furthermore, a generalization method, adding small random numbers to the MLNN input data, is applied. Simulations are carried out by using the brain waves, available from the Colorado State University website. By using the orthogonal components, a correct classification rate Pc can be improved from 70% to 78%, an incorrect classification rate Pe can be suppressed from 10% to 8%. As a result, a rate Rc = Pc/(Pc+Pe) can be improved from 0.875 to 0.907. When two different channel orders are used, Pe can be drastically suppressed from 10% to 2%, and Rc can be improved up to 0.973. The generalization method is useful especially for using a sigle channel order. Pc can be increased up to 84 ∼ 88% and Pe can be suppressed down to 2 ∼ 4%, resulting in Rc = 0.957 ∼ 0.977.
منابع مشابه
Control of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملEvaluating the optimization of irradiation components of mung bean seeds with ultrasound for increased seedling vigor, using artificial neural network
Extended Abstract Introduction: A large number of experimental evidence indicates the positive effect of irradiating the seed with ultrasonic waves; so that irradiation causes the production of a more vigorous seedling. Conversely, inappropriate intensity and duration of irradiation can impose deleterious effects on seedlings by damaging the enzymatic activity. There are complex inter-and in...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کامل